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1 Introduction

A common way to validate an investigational device measuring a certain physiological function such 
as the heart-rate (bpm) is to validate this device with respect to a gold-standard measurement or 
a reference measurement made, for example, using a predicate device. Validation is performed by 
assessing the agreement between the measurements made by the two devices.
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Figure 1: Bland-Altman plot example using simulated data

A well-known traditional (frequentist)
method to assess the statistical agree-
ment between two devices is the ap-
plication of the Bland-Altman plot.
This plot, introduced by Bland and
Altman (1986), is obtained by con-
structing a scatter plot of the dif-
ference of each pair of measurements
from the two methods against their
average.

Limits of Agreement (LoA) are then
added to the plot which are calculated
using:

LoA = µd ± 2σd,

where, µd is the (unknown) popula-
tion mean and σ2d is the (unknown)
population variance of differences be-
tween the two methods respectively.
We denote these population quanti-
ties by θU = µd + 2σd and θL = µd −
2σd. The upper and lower LoAs are
estimated from the data as d̄± 2SDd,
where d̄ and SDd are the sample mean and the sample standard deviation of the paired differences
between the two measurements. The upper and lower LoA estimates for a simulated data set is
shown in Figure 1. The blue region is the 95% confidence interval for the bias. The 100× (1−α)%
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confidence interval (CI) for the LoA are then obtained with the bounds given by

lower = d̄− 2SDd − tn−1,1−α/2SDd

√
1

n
+

z21−α/2

2(n− 1)
; and

upper = d̄+ 2SDd + tn−1,1−α/2SDd

√
1

n
+

z21−α/2

2(n− 1)
.

These confidence intervals are given by the region shaded in green (upper) and red (lower) in Figure
1. For normally distributed data and for α = 0.05, 95% of the future differences are expected to
lie between the above two bounds. In order for the agreement to be acceptable these upper and
lower bounds should be within a tolerance margin (±δ) which needs to be prespecified. The null
hypothesis (H0 : lower < −δ OR upper > δ) is rejected at 5% alpha if the 95% upper is less than
δ AND the 95% lower is greater than −δ.
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Figure 2: Power curves for different values of µd with σd = 5.

Powering for such agreement studies
are needed to ensure that even when
the bias and variability are accept-
able, the confidence interval for the
LoA is not too wide. Sample size cal-
culation for normal endpoints can be
carried out using an iterative process
suggested by Lu et al. (2016). Care-
ful planning of such studies is also re-
quired to ensure that they are also
not over-powered. Prior data may be
available from previous pilot studies
which can be used to guide the selec-
tion of the maximum bias and vari-
ability values for which the trial is
powered for. Power curves for fixed
(no interim analysis) designs for dif-
ferent assumed values of µd and σd =
5 and a tolerance margin of δ = 15
are given in Figure 2. We see that
there is substantial variation in sam-
ple size required for say 80% power,
depending on the true values of these
parameters.

In absence of prior data, adaptive group sequential designs that allow for early stopping for efficacy 
or futility or adapt sample size based on interim data can help in mitigating the risk of an under-
powered or over-powered trial. Below we propose a Bayesian adaptive two-stage design as an 
example of such a design.

2 Why a Bayesian Design?

Adaptive designs can be constructed under the traditional Frequentist as well as the Bayesian 
framework. In the frequentist framework, interim decision for adaptations such as sample size re-
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estimation rely on the conditional power (CP). For agreement studies, there is no straightforward CP
computation procedure available. Monte-Carlo estimates using simulations are possible, however,
in our point of view a better alternative is the use of the Bayesian predictive power as defined
by Spiegelhalter et al. (2004). In the Bayesian framework we assume non-informative or weakly-
informative priors on µd and σd. For the example below, these priors are Normal(0, 106) and
Gamma(0.5, 106) respectively. These priors densities are shown in Figure 3. The Normal prior is
essentially a flat curve centered at 0 and thus allowing for all possible values a priori. The Gamma
prior also allows for small as well as large variances.

Once data from the target trial is
available the above priors are updated
to get the posterior densities of µd and
σd from which we can get the poste-
rior densities for the upper (θU = µd+
2σd) and lower (θL = µd − 2σd) LoAs
(Figure 4). The use of weakly in-
formative priors ensure that the pos-
terior densities are almost fully in-
formed by the data from the target
trial.

For making interim decisions suppose
Dn1 are the data available at the in-
terim from n1 observations. The pos-
terior predictive density of future dif-
ferences (d∗) in paired measurements

Figure 3: Weakly informative prior densities for µd with σd (p(d∗|Dn1 )) can then be derived using 
for the Bayesian analysis. the Bayes theorem from the posterior 

distribution p(µd, σd|Dn1 ) obtained at
the interim analysis. This posterior

predictive distribution can then be used for calculating the predictive power for different sample 
sizes for stage-2 (n2). We describe the proposed two-stage adaptive design with the help of an 

example with simulated data in the next section.

3 Bayesian Adaptive Two-Stage Design

The two-stage adaptive design described here has only one interim look but can be generalized into 
multistage design with several interim looks. The increase in number of looks generally requires a 
marginally larger sample size.

3.1 Bayesian Success Criteria

As described above, at the final analysis we want to test the null hypothesis that θU > δ or 
θL < −δ, i.e., the upper (lower) LoA is greater (less) that δ (−δ). In the Bayesian framework, this 
null hypothesis can be rejected if the posterior probability that the θU < δ and θL > −δ, is greater 
than a pre-specified high threshold, usually greater than 0.975. This threshold (γ) is the success
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criteria and needs to be fixed at the planning stage based on simulations, mainly to ensure that 
the type-I error is controlled at the nominal level of 2.5% (one-sided). For illustration purpose, for 
the example below we set γ at an arbitrarily high value of 0.99 applicable to both the interim (for 
possible early stopping for success) and the final analyses. In practice however, a Bayesian group 
sequential design can be considered in order to set different values of γ for the different interim and 
final analyses with the γ threshold being larger for earlier interim than the later ones and the final 
analysis. A nice example of such Bayesian group sequential design is the Pfizer COVID vaccine 
trial, see Polack and et al. (2020). Also see Mukherjee et al. Mukherjee et al. (2022) for a Bayesian 
sequential trial based on predictive power for COVID vaccine trials.

3.2 Bayesian Interim Analysis

At the interim analysis, the posterior probability that the 95% upper LoA is less than δ and the 95%
lower LoA is greater than −δ is to be calculated. If this probability already exceeds the γ = 0.99 
threshold then stop the trial for success, otherwise calculate the predictive power to decide on the 
final sample size. Another possibility is early stopping due to futility when the calculated predictive 
power at the maximum sample size (respecting time and budgetary constraints) is still small, say 
below 20%. The futility threshold is also typically pre-fixed using simulations under various scenarios 
and clinical and logistical considerations and in general is considered to be non-binding.

3.3 Example with Simulated Data

To illustrate the proposed Bayesian Adaptive design we use simulated data where the original 
measurements (mimicking heart rate, bpm) were generated using a normal distribution with mean 
140 and SD 20. The mean bias of paired differences (µd) has been set equal to 2, and the standard 
deviation of differences (σd) equal to 5. Agreement margin and success threshold have been set to 
δ = 15 and γ = 0.99 respectively. Figure 4 (left) shows the Bland-Altman plot at the first interim 
look at n1 = 40 while the Bayesian posterior distribution for the upper and lower LoAs are shown 
in Figure 4 (right).
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Figure 4: Bland Altman plot (left) and the posterior distributions (right) for the upper and lower 
LoAs at the interim with n1 = 40 subjects. The red vertical lines (right) correspond to ±δ.
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Starting from weakly-informative prior, the posterior probability of success for Bayesian analysis is 
0.988, just below the success threshold. Also, lower LoA confidence interval in Bland-Altman plot 
includes the value δ = −15. Thus, both the Bland-Altman analysis as well as the Bayesian posterior 
distributions in Figure 4 (right) suggest not stop the trial early (with n1 subjects) for success and 
continue to the next interim.

Table 1: Predictive power computed with the
interim data with various final sample sizes.

Final N Predictive Power
50 0.7441
60 0.7918
70 0.8212
80 0.8494
90 0.8691

Following the proposed Bayesian design, we calculate
the predictive power at different final sample sizes.
These are given in Table 1 below. We see that a
predictive power of at least 80% is guaranteed at a
final sample size of N = n1 + n2 = 70 where the
predictive power given the interim data is 82.12%.
We thus take a final analysis at this sample size. The
final analysis Bland-Altman plot is given in Figure
6. The Bland-Altman plot with LoAs and the final
Bayesian posterior distribution (right) for the upper
and lower LoAs are shown in Figure 5 below. The
posterior probability that the upper LoA is less than
δ = 15 and lower LoA is greater than -15 is now
0.9979 which is statistically significant.

−20

−10

0

10

20

100 120 140 160
mean of measurements

di
ffe

re
nc

e

0.0

0.2

0.4

0.6

−20 −10 0 10 20
µd ± 2 × σd

P
os

te
rio

r 
D

en
si

ty

Figure 5: Bland Altman plot (left) and the posterior distributions (right) for the upper and lower 
LoAs at the final analysis with n1 + n2 = 70 subjects. Posterior probability of success is 0.9979.

4 Discussions

In this article, with an example using simulated data, we have presented a Bayesian adaptive design 
that allows for early stopping for success as well as for futility or re-estimation of the final sample size

5

http://alirahealth.com/wp-content/uploads/BA-fin.png
http://alirahealth.com/wp-content/uploads/BA-Post-Fin2.jpg


based on the interim data and using the Bayesian predictive power. Note that we could have carried 
out the interim analysis in the Bayesian framework with the final analysis being the traditional 
Bland-Altman analysis. This would be considered a hybrid design. Bayesian designs in general offer 
more flexibility in terms of interim adaptations. We have only focused on correcting the sample size 
at the interim but adaptations like population enrichment, dose selection and hypothesis selection 
in an exploratory trial are also possible. Bayesian designs are also better suited for Master protocols 
such as Basket and Umbrella trial designs. Our example focused on using weakly informative priors 
for the parameters of interest, however, if reliable historical data, for example from pilot or historical 
trials are available, then informative priors can be used for Bayesian designs. Using informative 
priors can result in savings in sample size for the future trial. This is particularly interesting for 
trials in rare diseases and medical devices with predicate(s) in the market. Extensive simulations 
are required at the planning stage in order to establish frequentist operating characteristics of the 
design for regulatory approval of the study design. Communication with regulatory agencies (FDA, 
EMA) should start early for Bayesian designs especially when using informative priors. To sum 
up Bayesian designs may need more rigorous upfront planning but the promise to save at the end 
and/or mitigating risk through proper pre-specified adaptation is real.
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